The Huntington’s Disease Research Pipeline

A research “pipeline” is the process of creating, testing, and approving a new drug for use in humans. HDSA funds researchers and doctors doing Huntington’s Disease (HD) research at different stages along the pipeline, and collaborates with industry partners to bring information about clinical trials to the public. We do not fund clinical trials but through our fellowship programs we support human-centric research.

Preclinical research  

The research pipeline involves basic research into what goes wrong in the brain in Huntington’s disease, to identify targets for treatment. Then, new and existing drugs can be created or repurposed to address that target, and the drug development process begins. 

Promising drugs are tested in models such as cells grown in a dish, fruit flies, and mice that are engineered to get Huntington’s disease.  If the results are positive, a drug will be rigorously tested in more mouse models and usually in primates. If a drug reaches its target, side effects are tolerable, and improvements are seen in animals, the drug can proceed to clinical trials in people. 

Clinical Trials of Drugs 

Once a drug is ready for testing in human patients, it must proceed through three phases of clinical trials. Phase 1 is a small trial (20-50 people with HD) testing safety. Phase 2 is a medium sized trial (50-200 people with HD) testing safety and effects of the drug on the body. Phase 3 is a large trial (200-1000 people) testing whether the drug helps with symptoms. A drug must be shown to be safe, well-tolerated, and effective before the FDA will approve it for human use.

Observational trials 

Observational trials do not involve testing a drug – they simply look at human behavior and biology to learn more about HD, through neurological exams, cognitive tests, and blood or spinal fluid donations. By observing and testing people with the HD gene over time and at different disease stages, researchers can discover what is changing inside the brain and body before and after the onset of HD symptoms. This is particularly important for the design of future trials that will need to measure the effectiveness of drugs before symptoms even appear.  

HD family members – gene positive, at risk, gene negative, and caregivers — can volunteer to participate in an observational trial like Enroll-HD 

A Dynamic Process 

Although the research pipeline appears to proceed smoothly from pre-clinical research to clinical trials, in practice it is much more dynamic.  Translational researchers may need to go back to basic researchers to have questions answered.  A drug may show clear signs of efficacy in preclinical testing but have serious side effects or require overly large doses to work.  Depending on its potential, there may be further efforts at developing the drug.  A drug that is successfully treating similar symptoms in another neurological disorder may move directly into clinical trials for HD patients. It is important for the HD community to know that many types of Huntington’s research are going on in parallel. Basic research, translational research, and clinical trials are all in progress. There are more than two dozen drugs and supplements actively moving through the pipeline with dozens of others nominated for consideration. When one critical question is answered, efforts turn to other questions. When one drug fails, resources are quickly redirected to researching more promising ones. 

To find out about the experimental medications currently moving through the research pipeline refer to the chart below. Note that this chart is focused on drugs and supplements. There are also studies underway that are focused on devices, non-drug interventions, and support systems to change brain and behavioral patterns and improve quality of life for people with HD. Examples include deep brain stimulation, dietary regimens, coaching, physical therapy, exercise, and psychotherapy.  

If a trial is noted as currently recruiting in the United States or Canada, you may find more information about it by going to HDSA’s clinical trials matching service, HD Trialfinder. HDSA strives to maintain updated listings and descriptions of the trials below. If you have questions or comments, please reach out to Dr. Leora Fox, Assistant Director of Research and Patient Engagement, lfox@hdsa.org.  

 

Therapies In the Pipeline 2023

 

Basic
Research
Preclinical R & D Clinical Development
Target Validation Lead Optimization Safety and Manufacturing Phase I Phase II Phase III

Tetrabenazine (Xenazine)

Lundbeck:   Tetrabenazine is used to treat the involuntary movements (chorea) of Huntington’s disease. Tetrabenazine is a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor, and  acts by decreasing the levels of the neurotransmitter dopamine in the synapse (space between neurons). In 2008 it was the first HD drug to be approved by the U.S. Food and Drug Administration (FDA) for HD.

Austedo (Deutetrabenazine)

TEVA Pharmaceuticals:   Deutetrabenazine uses the same mechanism of action as tetrabenazine to treat the involuntary movements (chorea) of Huntington’s disease, but deutetrabenazine is broken down by the body more slowly.  These differences may mean that the drug could be taken fewer times per day, at a lower dose, or with fewer side effects than tetrabenazine.

Ingrezza (Valbenazine)

Neurocrine Biosciences:   The KINECT-HD trial tested valbenazine as a treatment for HD chorea. This drug is already approved to treat people with a disorder called tardive dyskinesia (TD). TD causes facial and limb movements due to drugs prescribed for certain psychiatric conditions. A Phase 3 trial showed that valbenazine can successfully control HD chorea and the data is under FDA review with a decision expected by late August of 2023.  

SOM3355

SOM Biotech (Spain): SOM3355, also known as bevantolol hydrochloride, is a vesicular monoamine transport (VMAT) inhibitor that acts similarly to tetrabenazine by interfering with how dopamine messages are passed between neurons. A small study in Spain showed that this drug can control HD chorea, but it would need to be tested in a larger trial. Plans for this are uncertain at this time.

Pridopidine (PROOF-HD)

Prilenia Therapeutics: In a previous study, PRIDE-HD, pridopidine did not meet key goals for treating HD movement symptoms, but trial participants showed mild improvements in measures of independence in daily life. New studies suggest that pridopidine activates a protein called the sigma-1 receptor, which could have positive effects on brain health. PROOF-HD is a larger and longer study testing pridopidine's ability to help HD patients maintain their day-to-day function. It has fully recruited and results are expected in the second quarter of 2023.

tominersen (GENERATION-HD2 Trial)

Roche/Genentech:  Anti-sense oligonucleotides (ASOs) are a type of genetic drug aimed at lowering levels of the protein directly linked to HD, called huntingtin.  The 800-participant GENERATION-HD1 trial was testing an ASO called tominersen, which is delivered as a spinal injection. Dosing in this trial was halted in March 2021 for reasons of safety and efficacy, but later explorations of data showed that tominersen may have benefitted some people in the trial: those who were younger and dosed earlier in their course of disease. For this reason a new Phase 2 trial, GENERATION-HD2, will test tominersen in younger adults with earlier disease symptoms. This study will begin recruiting in early 2023.   

WVE-120101/120102 (PRECISION-HD)

Wave Life Sciences: Wave's ASO drugs aim to lower only harmful huntingtin by finding tiny genetic signals called SNPs on the faulty copy of the HD gene. The PRECISION HD-1 and PRECISION HD-2 trials tested two ASO drugs in ~60 people each. In March 2021 Wave presented data from these trials, and unfortunately neither drug effectively lowered huntingtin. For this reason, Wave has discontinued research on these two ASOs.    

WVE-003 (SELECT-HD Trial)

Wave Life Sciences: Wave has developed a third ASO that aims to lower harmful huntingtin. This drug improves upon the chemistry of previous Wave ASOs and is being tested in a small trial in Canada and Europe 

AMT-130

uniQure: AMT-130 is a genetic drug designed to silence the huntingtin message and inhibit the production of the mutant huntingtin protein. It is packaged inside a type of harmless virus called an AAV and delivered in a one-time dose via an MRI-guided brain surgery. There is a small safety trial ongoing in the USA, which has had positive early safety and huntingtin-lowering results, and full data from the first group treated are expected in Q2 of 2023.

Branaplam (VIBRANT-HD)

Novartis: Branaplam is an oral drug that was originally developed by Novartis to treat a childhood disorder called spinal muscular atrophy. It was also found to lower huntingtin protein by interfering with the genetic "recipe” in a process known as RNA splicing. Unfortunately a Phase 2 trial in adults with HD was halted in 2022 for safety reasons after branaplam unexpectedly caused nerve damage.  

PTC518 (PIVOT-HD)

PTC Therapeutics: PTC Therapeutics has also developed an oral splice modulator called PTC518 which reduces the levels of huntingtin in different animal and lab models of Huntington’s disease. A Phase 2 clinical trial (PIVOT-HD) in people with very early symptoms of HD is currently recruiting to investigate safety and huntingtin-lowering.  

SAGE-718 (PERSPECTIVE Program)

Sage Therapeutics: Sage-718 is an NMDA receptor antagonist that completed an early safety trial in individuals with Huntington’s disease and is now being tested in two Phase 2 trials, DIMENSION and SURVEYOR. The goal is to treat cognitive changes associated with HD. Both trials are recruiting at several sites across the USA.  

ANX-005

Annexon Biosciences: ANX-005 is an antibody given by IV that aims to help preserve the connections between neurons (synapses) in the HD brain. It acts on a part of the immune system known as the classical complement pathway, which becomes overactive in HD. A small  trial in people with HD was completed, showing that it was safe, well tolerated, and reached its target molecule in the body. A larger Phase 2 study is being planned.  

Pepinemab/VX15 (SIGNAL Trial)

Vaccinex:   VX15 is a drug that binds to and blocks a molecule that may cause inflammation in the brain of individuals with HD.  The SIGNAL trial was a Phase II study to assess the safety, tolerability and effectiveness of VX15 in people at risk for developing HD. The trial did not meet its key goals, but a 2022 publication suggests it may have had some benefit for people with more advanced HD. Further development is uncertain at this time.   

SRX246 (STAIR Trial)

Azevan Pharmaceuticals:    SRX246 is an investigational drug to treat symptoms of anxiety and aggression in early stages of HD. It acts by blocking vasopressin receptor 1a which plays a role in regulation of emotions. The STAIR trial has completed and did show positive effects in people with HD experiencing aggression, but plans for further development are uncertain at this time  

Triheptanoin

Ultragenyx Pharmaceuticals: Triheptanoin is a type of oil called a triglyceride that is being tested as a dietary supplement in a small study in France and the Netherlands. The primary goal is to test whether it can prevent atrophy of brain areas affected by HD.

Dextromethorphan/Quinidine

University of Texas Houston: Dextromethorphan and Quinidine are used to treat emotional outbursts that can happen in certain neurodegenerative disorders. This small study is testing the safety and efficacy of using this drug combination for irritability in individuals with Huntington’s disease.  

Cellavita (ADORE-DH Trial)

Azidus (Brazil): This study in Brazil is testing long-term IV injections of stem cells for the treatment of HD. After a successful safety study in a small number of individuals, the same participants will be recruited to receive the drug for a longer period of time, with no placebo, and all involved knowing about the treatment (known as an open-label extension study).  

Resveratrol

France: Resveratrol is a chemical that is found in red wine and some fruits and may act like an antioxidant. It can be purchased as a supplement, but there is not yet evidence that it could be helpful in HD. The French government is supporting a controlled study of resveratrol to see if it can slow brain atrophy in early HD. 

Tasigna (Nilotinib)

Georgetown University: Nilotinib, also known as Tasigna, is a chemotherapy drug used for the treatment of leukemia. There is some evidence to suggest that it could alter levels of dopamine, a brain signaling molecule that is disrupted in HD. This is a small trial to determine if nilotinib is safe and alters dopamine in HD patients. 

INT41

Vybion: INT41 is an intrabody, a drug designed to disrupt the toxic huntingtin protein from doing damage in cells. It is delivered using an AAV virus and has shown some promise by reducing huntingtin and improving behavior in HD mice.  

P110

Mitoconix: Mitoconix is developing drugs that maintain the health of mitochondria, the cell’s energy powerhouses, in order to protect brain cells in HD. P110 improved pathology and behavior in HD mice.    

Small molecule htt-lowering

PTC Therapeutics and Novartis: Several companies are working on oral huntingtin-lowering therapies – a pill taken by mouth that could reach the brain and change how the HD gene produces the huntingtin RNA message and lower harmful protein levels.  

Huntingtin-lowering shRNA

Sanofi and Voyager Therapeutics: A small hairpin RNA or short hairpin RNA (shRNA) can be used to interfere with the huntingtin message and stop the toxic protein from being made. Voyager’s drug will be delivered to cells via brain surgery using a harmless virus called an adeno-associated virus (AAV). The company recently received approval to move forward with planning a clinical trial in adults with HD.

Htt-lowering ZFN

Takeda and Sangamo: Zinc finger nucleases can target regions of DNA to modify them or stop RNA from being made. Takeda and Sangamo are collaborating on a selective mutant huntingtin-lowering ZFN that has been successful in human cells in a dish. 

Htt-lowering AON

Biomarin: Biomarin is developing an anti-sense oligonucleotide (ASO, or AON), a type of huntingtin-lowering drug that binds to the huntingtin mRNA (message) and results in a decrease in the level of huntingtin protein. It is aimed at CAG repeats in all genes, not only huntingtin.  

EHP-102

Emerald Health: EHP-102 is an oral drug derived from cannabigerol, which is found in the cannabis plant. In preclinical studies it has shown neuroprotective effects. Emerald Health is developing this investigational therapy for Huntington’s disease.  
FDA Approval
Production terminated
Further development uncertain