The #1 Most Important Aspect of HD Research:

Huntington's Disease Society of America

The information provided by speakers in workshops, forums, sharing/networking sessions and any other educational presentation made as part of the HDSA convention program is for informational use only.

HDSA encourages all attendees to consult with their primary care provider, neurologist or other healthcare provider about any advice, exercise, medication, treatment, nutritional supplement or regimen that may have been mentioned as part of any presentation.

PREDICTing Care: The Value of Pre-Diagnostic Observation

CHDI and NIH grant NS40068 2001-2013

Jane S. Paulsen The University of Iowa

University of Iowa Health Care

Clinical Trials: Model of Intervention in HD

Paulsen JS, Hayden M, et al. Preparing for preventive clinical trials: The Predict-HD study. Arch Neurol 2006;63:890.

PREDICT DEMOGRAPHICS 2009

	NC N=224	PRE FAR N=233	PRE MID N=245	PRE NEAR N=218	DX STAGE I N=66	DX STAGE II N=36	DX STAGE III N=7
Age	45.9	38.3	44.6	45.9	50.0	47.6	60.0
	(11.8)	(8.3)	(9.7)	(10.5)	(10.7)	(8.8)	(10.0)
Gender %Fe	65	68	64	59	64	64	57
Disease		197.5	279.2	364.2	352.3	396.5	369.9
burden		(37.9)	(26.8)	(46.8)	(69.8)	(110.8)	(88.1)
5-yr Prob		.050	.203	.447	.440	.504	.466
of DX		(.033)	(.067)	(.102)	(.167)	(.171)	(.171)
% Motor < 4	72.2	74.1	57.6	36.9	0.0	0.0	0.0
Mean	2.0	3.3	4.8	8.1	23.2	28.2	34.9
Motor	(3.2)	(4.1)	(4.8)	(7.2)	(9.8)	(10.8)	(14.8)

To date Predict has...

Reduced sample size for pre-HD

clinical trials (from 2097 for 5y 2-grp 80% P 20% effect to 880)

- Identified markers ~15 y prior to diagnosis
- Developed a database of scans, bloods, dna, phenotypic assessment

- Data being used to develop models of disease
- Facilitated the collaboration of clinical research teams
- papers, presentations, new investigators, additional grants
- Policy statement for disability legislation
- Diagnostic consensus conference planning

MOTOR, cognitive, psychiatric, IMAGING, *BLOODS*

Markers of HD

Paulsen JS, et al. Detection of Huntington's disease decades before diagnosis: The Predict HD study. J Neurol Neurosurg and Psychiatry 2007 Dec 20.

Observed time until diagnosis, by quintile of estimated risk

When should treatment begin?

- Age 18?
- When predictive testing shows exp+?
- Motor symptoms?
- Cognitive or behavioral changes?
- Brain tissue loss?
- Brain metabolism changes?
- Marital breakdown?
- Loss of job?

□ Is the acute change of motor score predictive of the HD-onset?

This question stems from the early observations in cross-sectional study.

Estimated Years to Diagnosis

Comparison of motor score between converters and non-converters

> It is apparent that the motor score is predictive of HD-onset

However, there is no clear cut-off for the motor score to determine the onset
PREDICT-HD

Acute change is also predictive of HD diagnosis and adds prediction power--in addition to the original motor score Positive Prediction Rates

Diagnosis	# of Subjects	% of HD-onset
mvalue ≥ 10	309	39.8
• maxslope ≥ 5	232	49.6
• maxslope ≥ 10	97	66.0
• maxslope ≥ 15	35	88.6
mvalue ≥ 15	169	59.2
• maxslope ≥ 5	147	65.3
• maxslope ≥ 10	80	70.0
• maxslope ≥ 15	32	87.5
mvalue ≥ 20	91	78.0
• maxslope ≥ 5	85	81.2
• maxslope ≥ 10	58	81.0
• maxslope ≥ 15	29	89.7

PREDICT-HD

A potentially useful predictive model for diagnosing HD-onset >The same data mining technique can be applied to other markers in the areas of imaging, cognitive, psychiatric.. etc. > Ultimately, a powerful predictive model for diagnosing HD will be built on those features

 A computer program needs to be developed to provide an objective diagnosis toolkit
 This diagnosis toolkit can be delivered in the form of decision tree as it is an easily interpretable model for clinical practice.

MCI in PREDICT-HD

Processing Speed

Duff et al. (2010)

Model 1: DNA and Age

Variables	Estimate	S.E.	p-value
age	-0.0072	0.0128	0.5745
cag	0.0355	0.0722	0.6226
burden	-0.0069	0.0019	0.0003

Model 2: DNA, Age and PREDICT markers

Variables	Estimate	S.E.	p-value
age	0.0200	0.0122	0.1022
cag	0.0860	0.0647	0.1836
burden	-0.0038	0.0018	0.0402
putamen	0.2549	0.0431	<0.0001
stroopin	0.0147	0.0056	0.0087
neurotot	-0.0295	0.0087	0.0007

Model Comparison

The two newly proposed models are compared to the previous working model (Langbehn model) regarding its prediction accuracy for HD diagnosis using PREDICT converters

Years to Diagnosis

Model	Ν	Mean	s.d.
Model 0	127	5.62	4.33
Model 1	127	3.34	2.73
Model 2	87	2.14	2.15

Percent of Diagnosed in each classification group

Models	Ν	Near (%)	Mid (%)	Far (%)
Model 0	127	93 (73.2)	24 (18.9)	10 (7.9)
Model 1	127	113(89.0)	12 (9.5)	2 (1.5)
Model 2	87	82 (94.3)	4 (4.6)	1 (1.1)

STUDY	PURPOSE	DRUG	SITES	Ν	CONTACT
2CARE	To assess the safety and tolerability of coenzyme Q10 and its effect on the progression of functional decline in HD	 2400mg CoQ10 Placebo 	42	608	HSG 800-487- 7671
CIT-HD	To evaluate the effect of citalopram (Celexa) on attention, thinking ability, movements and daily activities	 20mg Celexa Placebo 	3	36	Bill Adams 319-353- 4411
CREST-E	To assess the safety and tolerability of creatine monohydrate and its effect on the progression of functional decline in HD	 Creatine Placebo 	44	650	HSG 800-487- 7671
HART	To assess the safety and tolerability of ACR16 and its effect on the progression of motor and cognitive decline in HD	 20mg ACR16 45mg ACR16 90mg ACR16 Placebo 	35	220	HSG 800-487- 7671
HORIZON	To assess the safety of dimebon and its effect on the progression of cognitive and motor decline in HD	 60mg Dimebon Placebo 	60	350	HSG 800-487- 7671
PREQUEL	To determine the safety and tolerability of three doses of coenzyme Q10 in pre-manifest	1. 600mg CoQ10 2. 1200mg CoQ10	10	90	HSG 800-487-

Imaging to reduce sample size in clinical trials

NEAR

FAR

DIAGNOSED

MID

Annual Percent Change (Based on 2-Year Follow-up) All prodromal HD groups show greater longitudinal change than controls in white and striatum (p < .0001), not in gray

Controls differ significantly on Ventricular CSF change from Mid and Near; trend for Control-Far difference)

Gray-White Segmentation

Estimated Sample Sizes for Trials Using Striatum, Cerebral White, Frontal White, or Ventricular CSF as Outcome (percent reduction in DISEASE-RELATED change*)

		FAR			MIE)		NEAR	
Expected reduction in atrophy	50%	40%	30%	50%	40%	30%	50%	40%	30%
Total striatum	524	819	1457	108	169	300	140	219	390
Cerebral white	343	535	951	106	166	295	61	96	171
Frontal white	286	447	795	112	175	311	63	98	174
Ventricular CSF	879	1374	2443	188	294	524	59	92	163

*Based on effect size for pre-HD group minus effect size for normal controls

PREDICT-HD

Bottom Line

- WM change, especially in frontal lobe, may be an excellent outcome measure in addition to striatum
- Studies restricted to "near" and "mid" subjects can be accomplished with reasonable sample sizes (N=59 to 311)

Longitudinal marker of disease progression

Longitudinal Change Scores* by Prodromal Stage *[-NC] Near Mid DX'd Far Mot tot 1.1 WM .58 WM WM .25 _44 Chorea .99 Timing .39 Striat .44 Striat .20 Brady .77 Striat .38 Timing .14 Timing .34 Tap spd.59 Strp-C .29 TrailsA .14 Strp-C .10 SymDig.51 TrailsB.49 SymDig.27 SymDig.14 Oculo .48 Strp-C .14 Button .25 Button .47 Strp-W.46

Study in **PRE**-Manifest Huntington's disease of coenzyme **Q**₁₀ (**U**biquinon**E**) Leading to preventive trials

Primary Study Objectives

- To identify the highest dosage of CoQ amongst 600, 1200, or 2400 mg/day that is tolerable in pre-manifest participants with the CAGn expansion for use in future preventive trials.
- To determine the effects of CoQ on measures of oxidative injury (80HdG)
- To determine the feasibility of performing therapeutic trials in prodromal (presymptomatic) HD

PREQUEL Protocol Design

- Randomized, double-blind parallel group trial
- Assigned to 600mg, 1200mg or 2400mg per day of CoQ10 and followed for 20 weeks
- Blinded dosage reductions will be allowed for intolerability
- **Primary Outcome:** Ability to complete the study on the *originally* assigned dosage of CoQ

PREQUEL

PARTICIPATING INSTITUTIONS

 Baylor College of Medicine Houston ,TX
 William Ondo, MD~ Christine Hunter, RN, CCRC

(713) 798-3951

 Colorado Neurological Institute Englewood, CO

Vicki Segro ~ Diane Erickson, RN

(303) 762-6674

 Emory University School of Medicine Atlanta, GA

Randi Jones, PhD ~ Cathy Wood-Siverio, MS

(404) 728-4782

 Hennepin County Medical Center Minneapolis, MN

> Martha Nance, MD ~ Dawn Radtke, RN, CCRC (612) 873-2943

Indiana University Indianapolis, IN

Joanne Wojcieszek, MD ~ Jo Belden, LPN, CCRC (317) 278-0868

 John Hopkins University Baltimore, MD

Russell Margolis, MD ~ Nadine Yoritomo, RN

(410) 614-9254

 University of California ~ Davis Sacramento, CA
 Vicki Wheelock, MD~ Terry Tempkin, RNC MSN

(916) 734-6278

- University of Iowa Iowa City, IA Leigh Beglinger, PhD ~ Nancy Hale, BS, RN (319) 353-4537
- University of Rochester Rochester, NY
 Fredrick Marshall MD ~ Amy Chesire, LCSW-R, MSG (585) 341–7519
- Washington University St. Louis, MO

Susan Criswell, MD ~ Melissa Ammel (314) 747-3470 PREQUEL Primary Leadership Committee

CHRISTOPHER ROSS, MD, PHD PRINCIPAL INVESTIGATOR

KEVIN BIGLAN, MD, MPH CO-PRINICIPAL INVESTIGATOR

MERIT CUDKOWICZ,MD BERNARD RAVINA,MD, MSCE MICHAEL MCDERMOTT,PHD JANE PAULSEN, PHD FLINT BEAL, MD IRA SHOULSON, MD STEVEN HERSCH, MD, PHD ROBERT FERRANTE, PHD, MSC RAY DORSEY, MD, MBA TIM O'NEIL, MD SUZANNE DOGGETT, PC LISA de BLIECK, MPA, CCRC* ELAINE JULIAN-BAROS,BS, CCRC* SHARI KINEL, JD*

*EX-OFFICIO

H·S·G Huntington·Study·Group

For more information please visit the HSG website at :

www.huntington-study-group.org

PRE-manifest Huntington's disease of coenzyme Q10 (UbiquionE) Leading to preventive trials ~ PREQUEL ~ A MULTI-CENTER DOUBLE-BLIND RANDOMIZED CLINICAL STUDY SUPPORTED BY A GRANTEROM THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE (NINDS)

A clinical research study of

Clinical Research Hurdles towards Treatment

- Knowledge of HD mechanisms
 - Biomarkers
 - Genetic modifiers
 - Patterns of progression
- Measures are lacking
 - Functional outcomes
 - Reliable and standard motor ratings
 - Brief and standard cognitive tasks
 - Valid behavioral measures
- Volunteers

The #1 Most Important Aspect of HD Research:

Volunteerism and retention: What motivates participants?

 To connect with services or professionals that they may need

- To contribute to finding a treatment and a cure
- To make a difference in the fight against HD
- To keep more up-to-date on HD research happenings and findings by being in research studies

THANK YOU FOR BEING A TEAM PLAYER IN PREDICT-HD!

PREDICT HD SITE STAFF 2010

Sites Names and Personnel

Site Name Baylor College of Medicine, Houston, Texas
Cambridge Centre for Brain Repair, Cambridge, UK Cardiff University, Cardiff, Wales
Clinical Genetics Centre, Aberdeen, Scotland, UK Colorado Neurological Institute, Denver, Colorado Columbia University Medical Center, New York City, New York Emory University School of Medicine, Atlanta, Georgia Graylands Hospital, Selby-Lemnos & Special Health Care Services, Perth, Australia Harvard University / Massachusetts General Hospital, Boston, Massachusetts Hereditary Neurological Disease Center, Wichita, Kansas Hospital Ram'on y Cajal, Madrid, Spain
Indiana University School of Medicine, Indianapolis, Indiana
Johns Hopkins University, Baltimore, Maryland
Manchester University, Manchester, UK National Hospital for Neurology and Neurosurgery, London, UK
Royal Melbourne Hospital, Melbourne Australia St. George's Health Service, Melbourne, Australia
University of Alberta, Edmonton, Alberta, Canada University British Columbia, Vancouver, British Columbia, Canada University of Calgary, Calgary, Alberta, Canada
University of California Davis, Davis California University of California Los Angeles Medical Center, Los Angeles, California University of California San Francisco, San Francisco, California
University of Iowa, Iowa City, Iowa
University of Minnesota; Hennepin County Medical Center, Minneapolis, Minnesota
University of Rochester, Rochester, New York University of Toronto/Centre for Addiction & Mental Health, Markham, Ontario, Canada
University of ULM, Ulm, Germany
University of Washington and VA Puget Sound Health Care System, Seattle, Washington Washington University, St. Louis, Missouri Westmead Hospital, Westmead, Australia

Site Investigator	Cognitive Rater	Coordinator
J. Jankovic	C. Hunter	C. Hunter
W. Ondo		
R. Barker	S. Mason	S. Mason
A. Rosser	J. Naji	K. Price
	O.J. Handley	
S. Simpson	J. Hamilton	J. Hamilton
R. Kumar	D. Freis	D. Freis
P. Mazzoni	P. Wasserman	P. Wasserman
R. Jones	R. Jones	J. Hamson
P. Panegyres	M. Woodman	w. woodman
U. Rosas	D. Rosas	L. Murphy G. Suter
W. Mallonee	G. Suter M. Estac	M Baseunana Garde
J. Garda De Teberles	M. Fatas A Martinez Decesia	M. Dascunana Garde
K. Quaid	A. Martinez-Descais	M Wessen
n. guaid	A Rio Blanco	W. WESSON
A Rosephlatt	R Miller	
C Ross	B Shoritz	A. Agaiwai
D. Craufurd	R. MacLeod	R. MacLeod
T. Warner	M Burrows	M. Burrows
S. Kloppel		
P. Chua	P. Dingian	A. Komiti
E. Chiu	A. Goh	O. Yastrubetskava
D. Ames	C. Lemmon	,
W. Martin	S. Sran	P. King
L. Raymond	J. Decologon	J. Decologon
O. Suchowersky	M. L. Klimek	M.L. Klimek
S. Furtado		
V. Wheelock	K. Baynes	T. Tempkin
S. Perlman	A. Johnson	A. Johnson
M. Geschwind	M. Guzijan	M. Guzijan
	M. Wetzel	
K. Duff	K. Duff	M. Elbert
	M. Elbert	
M. Nance	D. Norberg	D. Radtke
	D. Tupper	
P. Como	P. Como	A. Chesire
M. Guttman	M. Guttman	C. Giambattista
	C. Glambattista	
R. Landus homeway	J. Stoper	V. Darth
B. Landwenrmeyer	K. Barth S. Trautman	K. Barth S. Trautesan
A Sami	S. Hautman K. Weawer	S. Hauthan
A. Sami	S Barton	S Barton
F. McCusker	B Bibb	J. Griffith
	K. Richardson	a. Second
	The second light for a fact in	

Iowa Personnel

- William Adams
- Christine Anderson
- Jessica Deaderick
- Nick Doucette
- Ann Dudler
- Kevin Duff
- Mackenzie Elbert
- Jana Hanson
- Andrew Juhl
- Douglas Langbehn
- Anne Leserman
- Brenda McAreavy
- Gerry Murray
- Jane Paulsen
- Stacie Vik
- Chiachi Wang
- Elijah Waterman
- Christine Werling-Witkoske

CTCC Personnel

- Catherine Covert
- Elaine Julian-Baros
- Elise Kayson
- Nichole McMullen
- Kay Meyers
- Donna Moszkowicz
- Nichole Muraco
- Beverly Olsen
- Karen Rothenburgh
- Lisa Rumfola
- Aileen Shinaman
- Mary Slough
- Joe Weber
- Hongwei Zhao

Consultants

- Donald Black
- David Watson
- Andrew Hollingsworth

Imaging Personnel

- Eric Axelson
- Hans Johnson
- Vincent Magnotta
- Peg Nopoulos
- Ron Pierson
- Ben Rogers
- Jim Smith
- Kent Williams
- Shuhua Wu
- Karl Helmer
- Kelvin Lim
- Sasumu Mori
- Steve Potkin
- Arthur Toga

Cognitive Personnel

- David Caughlin
- Terren Green
- Sarah Queller
- Julie Stout
- Shelley Swain
- Greg Ashby

DNA Personnel

- Marcy McDonald
- Jim Gusella
- Elana Aatteneo
- Stefano DiDonato
- Asa Peterson
- Sarah Tabrizi

Plasma Personnel

- Blair Leavitt
- Wayne Matson

Consultants (continued)

- Jean Paul Vonsattel
- Robert Pacifici

Event Monitoring Committee

- William Coryell
- Cheryl Erwin
- Christopher Ross
- Julie Stout

Steering Committee

- Elizabeth Aylward
- Kevin Biglan
- Mark Guttman
- Michael Hayden
- Bernhard Landwehrmeyer
- Douglas Langbehn
- Martha Nance
- David Oakes
- Jane Paulsen
- Christopher Ross
- Ira Shoulson
- Julie Stout

Recruitment & Retention Committee

- Christine Anderson
- Abhijit Argarwal
- Katrin Barth
- Amy Chesire
- Jane Griffith
- Mira Guzian
- Jenny Naji
- Norm Reynolds
 Stacie Vik